搜索
基础数学科研团队
【作者/来源:】   【发布时间:2017年12月21日 00:00 】   【点击量/阅读:

一、科研队伍

  基础数学科研创新团队现有11人,其中教授2人,副教授5人,具有博士学位10人,还有1人博士在读,先把主持人和成员简介如下:

(一)团队带头人简介

盛兴平,男,理学博士、教授,硕士导师,东南大学博士后在站,该同志现为中国工业与应用数学学会会员,中国现场大数据统计学会理事,安徽省数学会常务理事,自工作以来以第一作者公开发表论文50篇,其中被SCIEI检索20篇,CSCD核心期刊7篇,近年来先后主持安徽省自然科学基金面上项目、青年项目各1项,安徽省高校省级自然科学研究重点项目2项,安徽省高校优秀人才支持计划重点项目1项,参加安徽省高校省级自然科学研究重大项目1项,盛兴平教授近年来先后获得安徽省科学技术成果三等奖1项,安徽省第十届青年科技成果奖1项,获得安徽省第六届、第七届、第八届自然科学优秀论文二等奖2项,三等奖3项,安徽省首届教坛新秀。

(二)团队主要成员简介

王志刚,男,理学博士,副教授,硕士生导师,研究方向为非线性偏微分方程适定性及守恒律方程数值解。主持完成国家自然科学青年基金1项,中国博士后基金1项,省级各类科研项目3项;在J. Differential EquationsDiscrete Contin. Dyn. Syst.J. Math. Anal. Appl.等国际期刊发表论文10余篇;曾获得安徽省自然科学优秀论文三等奖、安徽省教坛新秀称号、安徽省青年教师教学基本功大赛三等奖。

储亚伟,男,理学博士、教授,硕士生导师,美国数学会会员,美国数学评论评论员。近年来主持省教育厅自科基金重点项目2项,主持安徽省人才基金项目1项,发表SCI论文11篇,获第八届省自科优秀论文三等奖 

唐剑,男,理学博士,副教授,硕士生导师,美国《Mathematical Reviews》评论员。近年来,主持国家自然科学青年基金1项,安徽省高校自然科学研究重点项目2、一般项目1,安徽省高校优秀青年人才基金重点项目一般项目1在国内外核心刊物上发表学术论文30余篇,其中被SCIEI检索16篇,CSCD检索9篇。

二、研究方向

根据基础数学的包含内容,基础数学科研创新团队共有三个方向,具体为:

方向之一:基础代数研究:该方向的研究分为两部分,即矩阵分析和代数学理论。矩阵分析方向主要从事矩阵广义逆的计算、扰动、大规模线性系统的求解以及矩阵不等式的研究。代数学理论研究主要从事超代数、模糊代数、复形范畴中的同调理论、代数表示论及序半群代数理论。

方向之二:微分方程.该方向主要的研究方向为:双曲守恒律方程、分数阶微分方程,动力系统等。

方向之三:几何分析.该方向的研究大分为两部分几何分析和分形几何。几何分析方向从事微分流形及其子流形的分析、代数与拓扑性质的研究。分形几何方研究分形维数,Assouad维数以及集合间Lipschitz等价内容。

三、发展目标

 通过年的建设,该团队能够汇聚优秀人才,整合科技人才资源,搭建创新科研平台,形成优秀的人才团队效应和当量效应,营造有利于我院中青年科研人才成长的环境和机制,推动我校重点优秀学科——基础数学的建设,最终能够将基础数学学科建设成省级有影响的学科,同时有效地支持数学一级学科由硕士点支撑学科建设为授权学科,进而为我校晋升大学做出相应的贡献。

四、近期主要学术成果

    (一)发表的论文

据不完全统计近3年,基础数学创新团队以第一作者或通讯作者发表被SCI检索论文36篇,EI检索4 篇, CSCD核心期刊2篇。

1X.Sheng, A relaxed gradient based algorithm for solving generalized coupled Sylvester matrix equations, J. Franklin Inst., 2018, 355(10): 4282-4297. IF 3.139,他引1.

2 X.Sheng, Computation of weighted Moore-Penrose inverse through Gauss-Jordan elimination on bordered matrices, Appl. Math. Comput., 2017,323(): 64-74. IF 1.333,他引1.

3X.Sheng and W.SunThe relaxed gradient based iterative algorithm for solving matrix equations , Comput.Math. Appl.2017,743: 597 -604. IF 1.531.

4X.Zhang and X.Sheng*The Relaxed Gradient Based Iterative Algorithm for the Symmetric (Skew Symmetric) Solution of the Sylvester Equation ,Math. Probl. Eng., Volume 2017, Article ID 1624969, 8 pages. IF 0.802.

5X.Zhang and X.Sheng*, Two Methods for Computing the Drazin Inverse through elementary row operations. Filomat, 30:14 (2016), 3759–3770. IF0.695,他引1.

6Y.Chu and S. Fang, Rigidity of complete manifolds with parallel Cotton tensor. Archiv der Mathematik, 2017, 109(2): 179-189. IF 0.590,他引2.

7Y.Chu, R.Huang and W. Li, Classification of complete generic shrinking Ricci solitons with pointwise pinched curvature. Differential Geometry and its Applications, 2017, 54: 385-396. IF 0.760.

8Y.Chu, Noncompact complete manifolds with cyclic parallel Ricci curvature. Annales Polonici Mathematici.2017, 119: 95-105. IF 0.559.

9Y.Chu, J.Zhou and X.Wang, Rigidity of complete generic shrinking Ricci solitons. Journal of Geometry and Physics, 2018, 124: 255-263. IF 0.712.

10J. Tang, Y. Luo and X. Xie. A study on (strong) order- congruences in ordered semihypergroups, Turkish Journal of Mathematics, 2018, 42(3): 1255-1271. IF 0.614.

11J.Tang, X.Feng, B. Davvaz and X. Xie. A further study on ordered regular equivalence relations in ordered semihypergroups, Open Mathematics, 2018, 16(1): 168-184. IF 0.831,他引1.

12J. Tang, X.Xin and X. Xie. Characterizations of ordered semihypergroups based on ordered fuzzy points, Italian Journal of Pure and Applied Mathematics, 2018, 39: 290-311. EI检索)

13J.Tang and X. Xie. On fuzzy quasi-hyperideals of ordered semihypergroups, Fuzzy Systems and Mathematics, 2018, 32(1): 51-59. (CSCD收录)

14J. Tang, B. Davvaz and X. Xie. An investigation on hyper S-posets over ordered semihypergroups, Open Mathematics, 2017, 15(1): 37-56.  IF 0.682,他引2.

15J. Tang, B. Davvaz, X. Xie and N. Yaqoob. On fuzzy interior Γ-hyperideals in ordered Γ-semihypergroups, Journal of Intelligent & Fuzzy Systems, 2017, 32(3): 2447-2460.  IF 1.261,他引2.

16J.Tang, B.Davvaz and X. Xie. A study on (fuzzy) quasi-Γ -hyperideals in ordered Γ-semihypergroups, Journal of Intelligent & Fuzzy Systems, 2017, 32(6): 3821-3838. IF 1.261,他引3.

17J. Tang and X. Xie. An investigation on left hyperideals of ordered semihypergroups, Journal of Mathematical Research with Applications, 2017, 37(4): 419-434. (CSCD收录)

18T. Jian and X. Xie. On C-left hyperideals of ordered semihypergroups, Communications in Mathematical Research, 2017, 33(3): 223-237. (CSCD收录)

19J. Tang, A. Khan and Y. Luo. Characterizations of semisimple ordered semihypergroups in terms of fuzzy hyperideals, Journal of Intelligent & Fuzzy Systems, 2016, 30(3): 1735-1753. IF 1.004,他引4.

20J. Tang, B. Davvaz and Y. Luo. A study on fuzzy interior hyperideals in ordered semihypergroups, Italian Journal of Pure and Applied Mathematics, 2016, 36: 125-146. EI检索)

21J.Tang, X. Xie and A.Khan. More general forms of interval valued (α,β)-fuzzy bi-ideals of ordered semigroups, Journal of Interdisciplinary Mathematics, 2016, 19(2): 253-277. EI检索)

22J. Tang and R. Wang. An investigation on fuzzy Γ-hyperfilters in ordered Γ-semihypergroups, ICIC Express Letters, Part B: Applications, 2016, 7 (12): 2611-2617. EI索)

23ZWang, Existence results for the radiation hydrodynamic equations with degenerate viscosity coefficients and vacuum, Journal of Differential Equations, 2018, 265(1):354-388. IF1.988.

24ZWang, Vanishing viscosity limit of the rotating shallow water equations with far field vacuum, Discrete & Continuous Dynamical Systems, 2018, 38(1):310-327. IF1.099.

25ZWang, Vanishing viscosity limit of the radiation hydrodynamic equations with far field vacuum, Journal of Mathematical Analysis & Applications2017, 452: 747-779.

26王志刚,线性传输方程的Entropy_Monotone格式, 上海交通大学学报,2016505):810-813. EI检索.

27 J. Zhao et al. Unsteady Marangoni convection heat transfer of fractional Maxwell fluid with Cattaneo heat flux, Appl. Math. Model.201744497-507. IF 2.617,他引9.

28 J. Zhao et al. Unsteady natural convection boundary layer heat transfer of fractional Maxwell viscoelastic fluid over a vertical plate, Int. J. Heat Mass Transfer201697760-766. IF 3.891,他引33.

29J. Zhao et al. Convection heat and mass transfer of fractional MHD Maxwell fluid in a porous medium with Soret and Dufour effects, Int. J. Heat Mass Transfer2016103203-210. IF 3.891,他引23.

30J. Zhao et al. Unsteady natural convection heat transfer past a vertical flat plate embedded in a porous medium saturated with fractional Oldroyd-B fluid, J. Heat Transf.-T. ASME2017139012501. IF 1.602,他引2.

31J. ZhaoL. Zheng and X. Zhang. Forced convection heat transfer of non-Newtonian Cross fluid in a square cavity, Heat Transf. Res.201748(5)465-476. IF 0.404,他引1.

32J. ZhaoL. Zheng and X. Zhang.  Mixed convection heat transfer of non-Newtonian Carreau-Yasuda fluid driven by power law temperature gradient, Heat Transf. Res.201748(9)749-764. IF 0.404.

33J. Zhao et al. Mixed convection heat transfer of viscoelastic fluid along an inclined plate obeying fractional constitutive laws, Heat Transf. Res., 201748(13)1165-1178. IF 0.404,他引1.

34J. Zhao et al. Unsteady convection heat and mass transfer of a fractional Oldroyd-B fluid with chemical reaction and heat source/sink, Heat Transf. Res., 201849(13)1231-1246. IF 0.404.

35J. Lin, Derived equivalence classification of Cohen-Macaulay Auslander algebras over cluster-tilted algebas of type \tilde{A}_n, J. Sichuan Univ.(Nat. Sci. Edi.), 2016, 53(5):  967-972. 他引1.

36J. Liu,  Generalizations of the Brunn–Minkowski inequality. Linear Algebra Appl. 2016 , 508: 206--213. IF 0.972, 他引 4次,

37J. Liu, Y. Poon and Q. Wang, A generalized Hölder type eigenvalue inequality. Linear and Multilinear Algebra.  2017, 65(10): 2145–2151. IF 0.835,

38J. Liu, Q. Wang and F. Sun, Determinant inequalities for Hadamard  product  of positive definite matrices.  Mathematical Inequalities & Applications,  2017, 20(2): 527-542. IF 0.535

39J. Liu, Q. Wang and L. Li, Uncertainty Relation on Generalized Skew Information with a Monotone Pair.  Int J Theor Phys.  2017, 56: 2423–2432. IF 0.968

40J. Liu, Q. Wang and F. Sun, On Hayajneh and Kittaneh's conjecture on unitarily invariant norm, Journal of Mathematical Inequalities, 2017, 11(4) : 1019-1022. IF 0.849

41J. Liu and Q. Wang, More inequalities for sector matrices. Bull. Iranian. Math. Soc. 2018, 44:1059–1066. IF 0.280

42J. Liu and X. Sheng, Analogues of some determinantal inequalities for sector matrices. Bull. Iranian Math. Soc 2018, 44: 53-59,2018. IF 0.280

(二)获奖

近年来,基础数学创新团队获得安徽省自然科学成果奖1项,青年科技创新奖1项,自然课优秀学术论文二等奖1项,三等奖6项。

   1、安徽省科协技术成果奖“连续系统离散状态下核心计算问题的研究”,三等奖,201111月,安徽省人民政府,盛兴平,陈果良。

2、安徽省第十届青年科技创新奖,共青团安徽省委员会,安徽省科技厅等,20149月,盛兴平。

3、安徽省第七届自然科学优秀论文“An iterative method for the symmetric and skew symmetric solutions of a linear matrix equation AXB+CYD=E”,二等奖,安徽省科协、安徽省科技厅,20134月,盛兴平、陈果良.

4、安徽省第七届自然科学优秀论文“A note of computation for M-P inverse ”,三等奖,安徽省科协、安徽省科技厅,20134月,盛兴平、陈果良.

5、安徽省第八届自然科学优秀论文“Innovation based on Gaussian elimination to compute generalized inverse ”,三等奖,安徽省科协、安徽省科技厅,20161月,盛兴平、陈果良.

6、安徽省第八届自然科学优秀论文On the scalar curvature estimates for gradient Yamabe solitons”,三等奖,安徽省科协、安徽省科技厅,20161月,储亚伟.

7、安徽省第七届自然科学优秀论文Chains of archimedean ordered semigroups”,三等奖,安徽省科协、安徽省科技厅,20134月,唐剑、谢祥云.

8、安徽省第八届自然科学优秀论文Characterizations of regular ordered semigroups by generalized fuzzy ideals”三等奖,安徽省科协、安徽省科技厅,20161月,唐剑、谢祥云.

9、安徽省第八届自然科学优秀论文“Renormalized entropy solutions for degenerate parabolic-hyperbolic equations with time-space dependent coefficients”,三等奖,安徽省科协、安徽省科技厅,20161月,王志刚、李亚纯.

上一篇:光电功能复合材料研发中心
下一篇:微生物与植物资源利用实验室
 
向上
 


Baidu
map